Technical Engineering English Programme

30

2

ADMISSION REQUIREMENTS

This program is intended for International and French students who have completed six to eight semesters of study (180 to 240 ECTS) at undergraduate level in Mechanical and Industrial Engineering.

Course Title	Course Code	ECTS Credits	First / Second Semester
Mechanical Engineering		Creates	
Energetics	8KEL1M04	3	2
Biomechanical Characterization and Modeling of Biological	9KEL1M16		1
Tissues			
The Multibody System Method Applied to the Human Body	9KEL1M20	3	1
Numerical Methods Applied to Biomedical Applications	9KEL1M15	6	1
Material Behaviors	8KEL1M15	2	2
Thermics	6KEL1M03	2	2
Technology of internal combustion engines	8KEL1M20	3	2
Industrial Engineering			
Sustainable Development	8KEL1M29	1	2
Integrated Logistics Support in Systems Engineering	9KEL1M98	3	1
Project management: tools and technics	6KEL1M14	1	2
Modeling, Analysis and Control of Manufacturing Systems	9KEL1M0F	1	1
Based on Petri Nets			
Applied Engineering			
Electric Energy Transport	9KEL1M27	1	1
Biomimetics	9KEL1M21	3.5	1
Prosthetic Device Design and Manufacturing	9KEL1M17	5	1
From Mechano-Transduction to Rehabilitation	9KEL1M18	1,5	1
Biomedical Basic Knowledge	9KEL1M22	2.5	1
Simulation with Star-CCM+	9KEL1M25	3,5	1
Transversal Project	9KEL1M19	4	1
French as a Foreign Language		2	1 / 2
		1	1
Research project in research laboratory		30	2

CREDITS

ENIM applies the European Credit Transfer System (ECTS) to express student workload. One ECTS represents approximately 28 hours of work, which include hours of lectures, applied exercises, lab work and private study. You can earn 30 credits per semester; a full academic year is 60 credits.

INTERNATIONAL TEAMWORK

Or Work placement in industry

During a semester or one year, you will participate with an international group of students from various universities partners, including engineering students from ENIM, and with diverse education and cultural backgrounds. The language of instruction is English, with French as a foreign language.

STUDY PERIOD AND APPLICATION

Study period is from September to end of June. A maximum of 12 international students is accommodated.

Contact International office: <u>enim-relinter-contact@univ-lorraine.fr</u> , Academic coordinators: <u>adrien.baldit@univ-lorraine.fr/</u> <u>mamadou.coulibaly@univ-lorraine.fr</u>

Course title	Thermics
Course Code	6KEL1M03
Field of study	Heat transfert
Offered	Summer
Coefficient	2
ECTS-credits	2 ECTS
Language	English
Prerequisites	 Fluid mechanics (flow regimes) Solving differential equations, Laplace transforms method
Teaching method	Lectures : 10h Tutorials : 10h Practical : 16h Personal : 28h

This course provides the basic equations and the general methodology to study heat transfer processes in mechanical systems and to design and develop heat exchangers

Learning objectives

- Knowing the basics on thermal problems approach (elementary knowledge, use of Wolfram Mathematica software).
- Minimum knowledge on heat exchanges processes.

- Conduction en régime permanent et variable
- Convection couche limite thermique : lois adimensionnelles
- Méthodes numériques et équation de Fourier
- Méthodes de calcul d'un échangeur de chaleur

Literature	(Une ou plusieurs références bibliographiques dont les étudiants pourront éventuellement se servir comme support)
Assessment	2 one-hour written exams
Grading	According to the grading scale of ENIM
Re-examination	No
Contact person	N. BONFOH (napo.bonfoh@univ-metz.fr)

Course title	Project management : tools and technics
Course Code	6KEL1M14
Field of study	Production Engineering
Offered	summer term
Coefficient	0.5
ECTS-credits	1
Language	English
Prerequisites	none
Teaching method	Lectures : 0 Tutorials : 8 Practical : 0 Personal : 12

Project management is a transversal tool essential when a collaborative work is needed to reach an objective. It provides a backbone for the entire progression to the objective and a set of techniques and methods useful to prepare, plan and monitor the process. Then it allows the minimization of delays, costs overrun and uncertainties inherent to all complex actions.

In a larger view, project management gives working and reasoning practices useful in any circumstances

Learning objectives

- Know how to control a project with involved costs. Learn the Budget definition and realisation and how use the actual and budgeted costs comparison to detect variances.
- Focus on investigative and diagnostic procedures to ascertain variance's causes

- Budget
- Different notions of cost
- "S" curves tools
- Project Control methods and technics

Literature	none
Assessment	Final written test
Grading	According to the grading scale of ENIM
Re-examination	No
Contact person	Daniel ROY

Course title	Energetics
Course Code	8KEL1M04
Field of study	Thermodynamics and fluids mechanics
Offered	Summer
Coefficient	2.5
ECTS-credits	3 ECTS
Language	English
Prerequisites	The basis of thermodynamics : fundamental laws, mass conservation equation, opened and closed systems, equation of state, notion of polytropic change
Teaching method	Lectures : 14h Tutorials : 14h Practical : 12h Personal : 34h

This course provides the basic equations and the specific methodology to design and develop nozzles, superchargers or turbochargers, used mainly for propulsion in aeronautics, aerospace and automotive.

Learning objectives

- Thinking and reasoning using a scientific methodology on compressible flows ;
- Controlling and checking the designing choices made, after analysis and argumentation, of a nozzle or compressor performance

Contents

2 parts :

- Compressible fluids dynamics (7h L, 7h T, 6h P)
- Compressors thermodynamics

Literature	 Anderson, John D. Jr. (2003) [1982]. Modern Compressible Flow John, James E.; Keith, T. G. (2006) [1969]. Gas Dynamics (3rd ed.) Horlock, J. H. (1982). Axial Flow Compressors: Fluid Mechanics and Thermodynamics S.M. Yahya (2011). Turbines, Compressors and Fans (4th Ed.)
Assessment	2 one-hour written exams
Grading	According to the grading scale of ENIM
Re-examination	No
Contact person	M. COULIBALY (mamadou.coulibaly@univ-metz.fr)

Course title	Materials behaviors
Course Code	8KEL1M15
Field of study	Mechanical Engineering
Offered	Summer semester
Coefficient	1.5
ECTS-credits	2
Language	English
Prerequisites	Strength of materials Elasticity
Teaching method	Lectures : 12 Tutorials : 12 Personal : 8

The tools are necessary to design or define structures. The constitutive relations are necessary to be used for example in FE codes to simulate different kind of processes and loadings.

Learning objectives

The students will be available to define and model material behavior of isotropic and heterogeneous materials. Both, elasticity and plasticity will be considered. Concerning heterogeneous behavior, the macroscopic behavior will be defined using the different phases (metallurgy) of the material.

Tensorial Analysis
Elasticity 1D and 3D (continuum mechanics)
Plasticity
Homogenization methods for heterogeneous materials

Literature	Constitutive Relations under Impact Loadings Experiments, Theoretical and Numerical Aspects Editors: Lodygowski T., Rusinek A.
Assessment	2 exams
Grading	According to the grading scale of ENIM
Re-examination	No
Contact person	Prof. Alexis Rusinek

Course title	Technology of internal combustion engines
Course Code	8KEL1M20
Field of study	Internal combustion engine
Offered	Summer
Coefficient	1.5
ECTS-credits	3
Language	English
Prerequisites	Kinematics and dynamics of solids Thermodynamics Design
Teaching method	Lectures : 6h Tutorials : 6h Practical : 4h Personal : 6h00

Knowledge of modern internal combustion engine used in automotive field.

Learning objectives

Understanding of its working principle taken into account the last improvements

Contents

History and evolution of reciprocating piston-crack engines Thermodynamics : gasoline and diesel engines Dynamics of the connecting rod-crankschaft-piston system Improvement of performances' engine : fuel injection, variable compression ratio, turbocharger,

Literature	none
Assessment	1 exam
Grading	According to the grading scale of ENIM
Re-examination	No
Contact person	S. Philippon

Course title	Sustainable Development
Course Code	8KEL1M29
Field of study	Industrial engineering
Offered	summer term
Coefficient	1
ECTS-credits	1 ECTS
Language	English
Prerequisites	Project management
Teaching method	Lectures : 4 hours Tutorials : 6 hours Personal : 12 hours
Motivation	·
Being able to develop an inc sustainable development	dividual and / or collective process of change in terms of
Learning objectives	

earning

To sensitize students to the concept of sustainable development in industrial activities

Capacity of Earth (cor	ntext / Issues of sustainable development)	
Adaptation of the ecor	nomy and new challenges	
Ethical and societal concepts, environmental impacts		
Indicators and standards of sustainable development		
Carbon Footprint / Greenhouse Gas Protocol / Factor 4 principle		
biodiversity		

Literature	Meadows, D. H.; Meadows, D. L.; Randers, J., Beyond the limits: global collapse or a sustainable future, <i>Earthscan Publications Ltd</i> .London, UK, 1992- ISBN 1- 85383-131-X McDonough W. and Braungart M., Cradle to Cradle: Remaking the Way We Make Things, North Point Press, New York, USA, 2002 - ISBN 0-86547-587-3 Anderson, R.C., Business Lessons from a Radical Industrialist, <i>St Martin's Press</i> , New York, USA, 2009, ISBN 978-0-312-54349-5	
Assessment	1 knowledge test + 1 review of acquired skills	
Grading	According to the grading scale of ENIM	
Re-examination	No	
Contact person	Sophie Hennequin	

Course title	Modeling, analysis and control of manufacturing systems based on Petri Nets	
Course Code	9KEL1M0F	
Field of study	Industrial engineering	
Offered	Winter or summer term	
Coefficient	2	
ECTS-credits	1	
Language	English	
Prerequisites	Linear algebra, basics on computer programming	
Teaching method	Lectures : 6 Tutorials : 6 Practical : 0 Personal : 20	

Develop a systemic vision on the management of industrial systems.

Learning objectives

Enhance the students manufacturing systems modeling skills using top-down and bottom–up systems analysis methods. Enable them to use Petri Net based tools to build models for performance evaluation through analytical methods and simulation. Understand real time challenges in monitoring and control of industrial applications.

- 1. Overview of the Petri Net model
- 2. Modeling of manufacturing systems
- 3. Performance analysis
- 4. Control synthesis techniques
- 5. Introduction to real time systems

Literature	 F. Cotet, J. Delacroix, Z. Mammeri, Scheduling in Real-Time Systems, J. Wiley&Sons, 2002. R. David, H. Alla : Discrete, Continuous and Hybrid Petri Nets, Springer-Verlag, 2010. J. M. Proth and X. Xie, Petri nets: a tool for design and management of manufacturing systems, John Wiley & Sons, 1996
Assessment	An examination
Grading	According to the grading scale of ENIM
Re-examination	No
Contact person	Alexandre SAVA

Course title	Numerical Methods for Biomedical Applications	
Course Code	9KEL1M15	
Field of study	Mechanics, Biomechanics	
Offered	Autumn	
ECTS-credits	6 ECTS	
Language	English	
Prerequisites	Fundamentals of tensor analysis	
_	Bases of Continuum Mechanics	
	Constitutive laws in elasticity	
Teaching method	Lectures : 20 hours	
	Applied Exercises : 12 hours	
	Lab work : 40 hours	
	Individual : 70 hours	
Motivation:		
The numerical technique	s such as Finite Element Method (FEM) are indispensable to solve	
complicated tasks of mo	dern design of parts, components, prosthetic solutions or modeling	
of thermo-mechanical be	havior of biological tissues or organs.	
Learning objectives		
I he main goals of this co	burse are as follows:	
to understand the		
 to be able to solve built simple FEM models in elasticity and plasticity, 		
 to be able to build the geometry of objects from the µCT or DICOM files, 		
• to execute FE simulations using general purpose software such as Marc or Abaqus or		
open source code	es such as FEBIO- to give the physical bases of X-ray techniques	
to introduce the r	nethods of image segmentation	
to provide practic	al aspects of use of µC1	
Contents	Level of competency (4)	
I heoretical base	es of FE Methods 2	
• FEM in 1D, 2D, 3	3D elasticity 2	
 Segmentation th 	eory 3	
 µCT techniques 	and practical 2	
aspects	2	
Biomedical appli	cations in FE	
Literature	The Finite element method, O.C. Zienkiewicz, R.L. Taylor,	
	Butterworth-Heinemann, 2000	
	Applied Finite element analysis, L.J. Segerlind, John Wiley	
• • • • • • • • • • • •	&Sons, 1984	
Assessment	written (2n), 2 projects	
Grading	According to the grading scale of ENIM	
Re-examination		
Contact person		
More contact persons	A.S. BONNET, C. DREISTADT, T. GAJEWSKI, C. LAURENT, P.	
	I LIPINSKI, J. TARASIUK	

Course title	Biomechanical Characterization and M	lodeling of Biological
Course Code	9KFI 1M16	
Field of study	Mechanics Biomechanics	
Offered	Autumn	
FCTS-credits	3 FCTS	
	English	
Prerequisites	Continuum mechanics for solids: tensor c	alculus and Finstein
relequince	notation. Theory of elasticity (small strain	s). Isotropic and
	anisotropic constitutive laws, mechanics	of plastic strain, plasticity
	criteria.	
	Basic knowledge concerning experimenta	al tests on conventional
	materials.	
Teaching method	Lectures : 20 hours	
-	Applied Exercises : 8 hours	
	Lab work : 8 hours	
	Individual : 36 hours (20h lectures, 8h AE	, 8h lab work)
Motivation		
A strong knowledge of t	he mechanical behavior of biological tissu	es is required to
understand the clinical is	ssues for rehabilitation and design new pr	osthetic solutions.
Learning objectives		
 At the end, the students should: Be able to apply the theoretical principles of the continuum mechanics to study biological tissues Know the composition and structure of bone tissues Know the mechanical properties of bone tissues (constitutive laws, ranges) Know the mechanical properties of soft tissues Know the ethical principles to conduct research on animals, human bodies and human-beings Understand and explain the experimental issues specific to biological tissues in response to specific hypotheses 		
Contents		Level of competency (4)
 Theory of elastic 	city (small strains and large strains)	3
 Anisotropic elas 	ticity	2
 Hyperelasticity 		2
Multiscale aspects of biological tissues		1
Experimental testing in biomechanics		2
Apparent properties of hard tissues		2
Mechanical prop	perties of soft tissues	2
Literature	Bone mechanics handbook by Cowin (IS	SBN 9780849391170)
	Skeletal tissue mechanics by Martin, Bu	irr and Sharkey (ISBN 0-
	387-98474-7)	
	Mochanics of Biological Tissue - Part IV	: Riological tissues by
	Holzanfel and Orden (ISRN-13 078-3-5	. Боюуюа иззи с з бу 40-25194-1)
A ssessment	Written (2h)	
Grading	According to the grading scale of FNIM	
Re-examination	No	
Contact person	E DE BROSSES	
More contact persons	A. BALDIT, E. DE BROSSES, C. LAUR	ENT, P. LIPINSKI

Course title	Prosthetic Device Design and Manufact	uring
Course Code	9KEL1M17	•
Field of study	Mechanics, Biomechanics	
Offered	Autumn	
ECTS-credits	5 ECTS	
Language	English	
Prerequisites	CAD software	
	Manufacturing processes	
	Material science	
	Dimensioning	
Teaching method	Lectures: 36 hours	
	Applied Exercises : 2 hours	
	Lab work: 24 hours	
Mativation	Individual: 60 hours (30 lectures, 30h lab w	ork)
The metivation of this med	ula ia ta provida knowladza an hiamatariala	
in order to design new mod	lical dovices	and manufacturing processes
In order to design new med	lical devices.	
This module is composed (of 4 parts: Biomaterials, Prosthetic device de	sian: Prosthetic device
manufacturing Design proj	iect	
The aims of the module are	2:	
Biomaterials:		
 to give definition ar 	nd generalities about biomaterials	
 to describe more p 	recisely the third-generation implants (tissue	engineering)
 to know what a pol 	ymer is and which polymer can be used for	biomaterials
Prosthetic device design:		
 to give the differen 	t steps of a standard device design and pati	ent-specific device design
 to explain regulation 	ons concerning the device design	
Prosthetic device manufac	turing:	
 to describe proces 	ses manufacturing used for polymers	
 to describe the diff 	erent technologies of additive manufacturing]
Design project:		
to be able to desig	n a new device corresponding to the propos	ed project
Contents		Level of competency (4)
Biomaterials		2
Issue engineerin	g	3
Prosthetic device	design	2
Additive manufacturing		2
Polymer science		2
Conventional mar	lufacturing processes	_
Literature	Series on Biomaterials and bioengineering	Vol. 1, An introduction to
	biocomposites by Seeram Ramakrishna, Z	Theng-Ming Huang, Ganesh V
	Kumar, Andrew W Batchelor, Joerg Mayer	· (ISBN 1-86094-425-6)
	Series on Biomaterials and bioengineering	Vol. 2,Life-Enhancing plastics
	by Anthony Holmes-Walker (ISBN 1-8609-	4-462-0)
	Additive manufacturing technologies by la	n Gibson, David W. Rosen,
	Brent Stucker (ISBN: 978-1-4419-1119-3)	
Assessment	1 Written exam (WE), 1 Project (P) to obta	un a ⊢inal Ass. (0.5 WE+ 0.5 P)
Grading	According to the grading scale of ENIM	
Re-examination		
Contact person		
wore contact persons	A. BALDIT, AS. BONNET, C. DREISTAD	ח, G.DUBOIS, X.GODOT, P.
	LAHEUKTE, C. LAUKENT	

Course title	From Mechano-Transduction to Ref	nabilitation
Course Code	9KEL1M18	
Field of study	Mechanicals, Biomechanics	
Offered	Autumn	
ECTS-credits	1.5 ECTS	
Language	English	
Prerequisites	Structure of bone tissues, Behavior of I	piological tissues, Finite
-	Element Method	
Teaching method	Lectures: 8 hours	
_	Applied Exercises: 2 hours	
	Lab work: 8 hours	
	Individual: 18 hours	
Motivation		
To propose innovative th	nerapeutic solutions for rehabilitation, it i	s necessary to make the link
between mechanics and	biology.	
Learning objectives		
	ale and de	
At the end, the students	snould:	
understand the e	volving behavior of bone tissues	
have knowledge	about the link existing between cellular	activities and modifications in
biological tissues		
Understand mode	els simulating bone adaptation, nealing a	and remodeling
know the main so	Diutions for bone reconstruction	
Contents		
Introduction to a	daptive behavior of biological tissues	2
Mechano transduction and cell differentiation		3
Bone growth, bone healing, bone remodeling		ວ ວ
Bone remodeling mechanisms		3
Solutions for bone reconstruction		2
Trabecular bone remodeling and structural		5
optimization		
Literature	Skeletal Function and Form by D.R. C	arter, G.S. Beaupre
Assessment	VVritten (2h)	
Grading	According to the grading scale of ENIN	Л
Re-examination	NO	
Contact person	Anne-Sophie BONNET	
More contact persons	GANGHOFFER Jean-François, NOW	e, DE BROSSES Emilie, AK Michal

Course title	Transversal Project
Course Code	9KEL1M19
Field of study	Mechanics, Biomechanics, Biomimetics
Offered	Autumn
ECTS-credits	4 ECTS
Language	English
Prerequisites	Solid and fluid mechanics, biomimetics
Teaching method	Lectures: 6 hours
	Tutorials: 6 hours
	Practical: 32 hours
	Personal: 44 hours

- Interest for scientific projects within a workgroup.
- Use all skills learned to fulfill a project answering a professional issue.

Learning objectives

At the end, the students should:

- be able to find information needed in scientific and technological documents,
- be able to use and apply all expertise learned in biomimetics and biomechanics,
- be able to work as a team,
- be able to manage a project.

Contents

Scientific document analysis (4h lectures / 8h tutorials) :

- Scientific articles
- Patents
- Standards

Transversal project (32h practical): Based on the overall courses done during the semester, a project is proposed to the students allowing them working as a team to answer an industrial need. All students' skills are required to work and succeed in a good and dynamic atmosphere.

Literature	Depending on the project	
Assessment	2 reports and 2 presentations	
Grading	According to the grading scale of ENIM	
Re-examination	No	
Contact person	BALDIT Adrien (baldit@enim.fr)	
More contact persons	BALDIT Adrien, BONNET Anne-Sophie, DE BROSSES	
	Emilie, DREISTADT Cynthia, FONCK-NUNEZ Marie	

Course title	The Multibody System Method Applied to the Human Body
Course Code	9KEL1M20
Field of study	Mechanicals, Biomechanics
Offered	Autumn
ECTS-credits	3 ECTS
Language	English
Prerequisites	Mechanics: Basic knowledge concerning the kinematics of rigid body, the Newton's laws applied to rigid bodies, Theological models. Anatomy: Names of the limbs, joints and bony structures. Names of the anatomical directions and planes.
Teaching method	Lectures: 18 hours Applied Exercises: 20 hours Lab work: Individual: 38 hours (18h lectures, 20h AE)

The analysis of human motion is a method widely used in different technological fields such as for medical applications, in sport, robotics or entertainment.

Learning objectives

At the end, the students should:

- Write and solve the equations corresponding to a human motion
- Understand the usefulness of the "frame of interpretation"
- Know the hypotheses made for the analysis of human motion
- Understand the usefulness of standardization for the definition of anatomical frames
- Analyze the results of a kinematic study on human body
- Write the Newton's laws for dynamic studies on human body
- Know the models for the determination of the body segmental inertial parameters
- Use of the kinematic data for the inverse dynamics method
- Know the physiological behavior of muscles
- Use rheological models to describe the mechanical behavior of muscles
- Understand and explain the principles of EMG and sEMG measurement

Contents		Level of competency (4)
 Motion analysis of human body (kinematics and 		3
dynamics)		2
Posture and muscles		
Literature	Kinematics of Human Motion by V. Zatsiorsky (ISBN-13:978-	
	0880116763)	
	Kinetics of human Motion by V. Zatsion	rsky (ISBN-13:978-
	0736037785)	
	Biomechanics of the Musculo-skeletal System by Nigg B.M. &	
	Herzog W. (ISBN-13: 978-0470017678	3)
Assessment	Written (2h)	
Grading	According to the grading scale of ENIM	
Re-examination	No	
Contact person	E. DE BROSSES	
More contact persons	E DE BROSSES, W. WOJNICZ	
-		

Course title	Biomimetics
Course Code	9KEL1M21
Field of study	Biomimetics and Locomotion
Offered	Winter
Coefficient	4
ECTS-credits	4 ECTS
Language	English
Prerequisites	None
Teaching method	Lectures : 20 hours Tutorials : 4 hours Practical : 20 hours Personal : 40 hours

Motivation: Student perception of biomimetics is crucial to develop new ideas and concept to design biomechanical systems or devices.

Learning objectives: It will start with knowledge about the development of biomimetics and its use since middle age allowing having reflection about ideas from nature.

Secondly, the students will be introduced to bio fluid mechanics applied to nature. Fundamental equations of fluid mechanics will be taught and followed by numerical application thanks to computational fluid dynamics.

Contents:

The course will give a short introduction into the field of biomimetics: What is biomimetics – and what not, the 3-criteria-definition, biology push – technology pull, application areas. Short excursion into history: from the middle age to the year 2000. The biomimetical working process (problem definition, morphologi- cal / Zwicky box, weighting of criterias, best model, plan B). Where the models / ideas came from: some biology (phylogenetics, systematics, morphology, locomotion of animals). Selection of examples from current topics in biomimetics (functional surfaces, bio-materials, ultraleight structures, fluid dynamics and MAVs / AUVs), the course will end with a short workshop "Is there an idea from nature to...?".

With various examples the introduction to bio fluid mechanics gives insight of fluid mechanical phenomena in nature which have been transferred to technical applications. To understand and to apply computational fluid dynamics the knowledge and understanding of the fundamental equations of fluid mechanics are essential. Therefore, the continuity and Navier-Stokes equations are derived. To build up a simulation case further knowledge is required about the numerical treatment of the fundamental equations. This is delivered in numerical methods in fluid mechanics. After a short introduction to Ubuntu the hands on application starts with a simple case of computational fluid dynamics which gets more complex further on. As software, the open source code OpenFOAM is applied.

Literature	 Turbulence in Fluids (4th edition), M. Lesieur, Springer, 2008. Analysis of Vertebrate Structure (5th edition), M. Hildebrand and G. Goslow, 2002. An Introduction to Fluid Dynamics, G. K. Batchelor, Cambridge Mathematical Library, 2000.
Assessment	The Assessment consists of a project report of 3000 words, written in English. The project deals with an improvement of a fluid mechanical related technical application using biomimetic technique. Therefore, the original and the modified object are investigated by numerical fluid simulation. The object is chosen by the students.
Grading	According to the grading scale of ENIM
Re-examination	No
Contact person	BALDIT Adrien - <u>adrien.baldit@univ</u> -lorraine.fr

Course title	Biomedical Basic Knowledge
Course Code	9KEL1M22
Field of study	Medical science, Biomechanics
Offered	Autumn
ECTS-credits	2.5 ECTS
Language	English
Prerequisites	None
Teaching method	Lectures: 24 hours
	Applied Exercises:
	Seminars and visits: 10h
	Individual: 24 hours (24h lectures)

Bases of anatomy, histology and implantology are necessary for the design of medical devices

LearnLearning objectives

- To give engineering students basic notions about anatomy of head and neck
- To give engineering students basic notions about histology
- To give engineering students basic notions about medical imaging
- To provide clinical examples of craniomaxillofacial reconstruction
- To introduce engineering students to an understanding of dental implantology and the widening of knowledge in this discipline.
- To draw attention to the biomechanical aspects of dental implant complications.

Contents Anatomy, Histology Craniomaxillofacial reco Dental implantology Seminars and visits 	onstruction	Level of competency (4) 2 2 3 1
Literature	Dental Implant Prosthetics by C.E. Misch.	
	Implant Overdentures. The Star	idard of Care for Edentulous
	Patients by J.S. Feine, G.E. Carlsso	on.
	Manual of Oral Implantology from	C. Maiorana, M. Beretta M,
	Implant Therapy. Clinical Approa	aches and Evidence of Success
	Volume 2 by M. Nevins, J. Mellon	ling.
	Tissue Engineering. Applications ir	Oral and Maxillofacial Surgery
	and Periodontics", Second Edition	by S.E. Lynch, R.E.Marx, M.
	Nevins, L.A. Wisner-Lynch.	
Assesment	1 project	
Grading	According to the grading scale	of ENIM
Re-examination	No	
Contact person	Anne-Sophie BONNET	
More contact persons	Emilie DE BROSSES, Malgorza ZWETYENGA	ata NATHER Narcisse

Course title	Simulation with Star-CCM+
Course Code	9KEL1M25
Field of study	Computational Fluid Dynamics
Offered	winter term
ECTS-credits	3.5 credit ECTS
Language	English
Prerequisites	Fluid dynamics Thermics
Teaching method	Lectures: 0h Tutorials: 16h Practice: 48h Personal: 12h
Motivation	· ·

- Setup a CFD simulation ;
 Evaluate drag forces on a vehicle;
- Evaluate a fluid velocity, pressure, temperature along a streamline ;

Learning objectives

- Mesh and model setup ;

- Warnings about CFD software pitfalls and limits ;

- Analyse and validate a CFD simulation result

Contents

Using Star-CCM+ software :

- Gas or water pipe flows (laminar, turbulent) ;

- Wind tunnel simulations ;
- Air/Water heat exchanger ;

Literature	- PDF Tutorials on Agora ; Star-CCM+ help files ;
Assessment	3 simulations to achieve
Grading	According to the grading scale of ENIM
Re-examination	No
Contact person	F. Rimbert

Course title	Electric Energy Transport
Course Code	9KEL1M27
Field of study	Electrical Engineering
Offered	Winter term
ECTS-credits	1
Language	English
Prerequisites	 To get the most benefit from this course, attendees should have: An understanding of complex numbers associated with sinusoidal electric voltages and currents An understanding of Kirchhoff circuit Law A basic understanding of electric power
Teaching d	Lectures: 10 hours Tutorials: 8 hours Practical: none Personal: 12 hours The students will experiment the <i>learning-by-doing</i> way of working. They'll be asked to work on a Portfolio to defend in front of a jury. In this course a portfolio is a collection of problems to be solved by the students and presented for evaluation. Students will work in pairs and each pair of students will have a set of two different problems: three-phase AC circuit and power line transmission. During the seminars they'll work on their portfolio and outside the class 12 hours of personal workload is expected. Every student will defend his job in front of a jury at the end of the course
Motivation Growing population te involves energy la ce consumption whi This course address damentals of electri Learning objective When the course is Describe E Explain the Master bas Explain the	as and industrializing countries create huge needs for electrical energy. Transmitting electricity over oss. So, with growing demand comes the need to minimize this loss to achieve two main goals: reduce le delivering more power to users. es the need to minimize the energy loss and the ways to achieve it. It'll give the students a fresh look at c energy transport and a new way of working s completed, students are expected to be able to: lectric Power Grids structure e need for high voltage transmission and reactive power compensation d how Transmitted Power over the line and Voltage Drop constraints are related ic calculation associated with sinusoidal electric voltages and currents e pros and cons of the Portfolio method they went through
Contents Basics of F Complex n Electric po Three-phas Power line	Electric Energy Transport numbers associated with sinusoidal electric voltages and currents reminder. wer: active, reactive and apparent se AC circuit (circuit analysis) transmission (efficiency, voltage drop, reactive power compensation)
Literature	 Foundations of Electrical Engineering. JR Cogdell, Prentice Hall. Chapters 1, 4, 5 and 6 Schwartz & Oldham, Electrical Engineering an introduction, second edition, Oxford. Chapters 6 and 7 Electrical Machines, Drives and Power Systems, fourth edition. Theodore Wildi, Prentice Hall. Chapters 2, 7, 8 and 25 Electric Power Distribution System Engineering. Turan Göenen, CRC Press. Chapter 7 Electric Energy, an introduction. Mohamed A. El-Sharkawi, CRC Press. Chapters 2,7 and 8
Assessment	The learners will have to produce a written Portfolio in order to demonstrate the competencies they master and defend it in front of a jury.
Grading	According to the grading scale of ENIM
Re-examination	No
Contact person	NOWAK Thierry, email: thierry.nowak@univ-lorraine.fr

Course title	Integrated Logistics Support in Systems Engineering	
Course Code	9KEL1M98	
Field of study	Systems Engineering	
Offered	Fall term	
Coefficient	2	
ECTS-credits	3 credit ECTS	
Language	English	
Prerequisites	Systems analysis and modeling, Functional analysis and modeling, Basics in statistics and probability, Industrial internship	
Teaching method	Lectures: 8 h Tutorials: 8 h Projects: 8 h Personal: 20 h	

The development of complex industrial systems requires knowledge to better specify their safe operation requirements, to anticipate logistical needs in material, human, data and information, in phase of acquisition, and to better manage their after-sales services. This aims to ensure their competitive operational efficiency. The concepts learned in this course are useful for engineers who are willing to participate effectively in the development of such integrated systems, starting from design. The acquired skills are a real added value for companies looking to develop integrated and competitive equipment with low overall cost of ownership and highly available during operation.

Learning objectives

- to understand the analysis and design methods of complex systems
- to model and evaluate the performance of a complex system and its support system
- to allocation dependability requirement to a system to be designed of acquired
- to model and optimize a logistics and after-sale service
- to size and optimize the inventory of spare parts and tooling
- to analyze and anticipate an overall cost of ownership

Contents

- General introduction to ILS (Integrated Logistics Support)
- Optimization of RAMS requirements allocation in design phase
- Maintainability analysis and prediction in design phase
- Features for dominant solutions selection
- Design for Supportability
- Logistic Information System

٠

Literature	 B. Blanchard and Fabrycky, System Engineering and Analysis, Prentice Hall, 1998. M. Pecht, Product reliability, maintainability, and supportability handbook. CRC Press, 2009. B. Dhillon, Life cycle costing: techniques, models and applications. Routledge, 2013. J. Knezevic, Reliability, maintainability, and supportability: a probabilistic approach. McGraw-Hill Companies, 1993. Díaz, V. González-Prida, and A. Crespo Márquez. "After–sales Service of Engineering Industrial Assets. Springer,
Assessment	Examination (30%), Home work (20%), Collaborative project report (30%), Oral defense (20%)
Grading	According to the grading scale of ENIM
Re-examination	Yes
Contact person	Prof. Kondo H. Adjallah